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Temporary work contract

A temporary work contract expects the work
relationship to have:

e A final term

A fixed duration.




Temporary work contract

Contracts facilitate access to the world of work but

are often characterized by lack of guarantees for
workers




Our Ildea: Blockchain e Smart contract
for Temporary Employemnt

*.

Blockchain technology allows
the rapid registration of
employment contracts In
accordance with legislation,
for full protection of the
rights of both the worker and
the employer




Blockchain and Smart contract

Work contracts can be registered
In"a immutable manner within the
blockchain and can be read by the B — M
competent authorities In each — ‘

moment Iin order to verify the
legality




The employment eco-system

We designed and implemented
a decentralized Dblockchain-
based employment system for
the management of temporary
employment.

We design our system by
following the ABCDE Method




The employment eco-system

We designed our system by following the ABCDE Method.

The ABCDE methodology expects the definition of the
system objective, the identifying of the system’s actors, and
the subdivision of the system in out-of-chain and in-chain
components using the diagrams as prescribed by BQSE
(Blockchain Oriented Software Engineering). 6




Objectives

" Make any employment
relationship implemented
for temporary work
transparent and traceable

" Simplify and standardize
hiring procedures and

prevent undeclared work >




Actors

" The Employer: it announce the request for one or
more workers, it describes the job (the pay, the
time period for the request, and so on).

" The worker : it typically applies for a job,
provides his CV, if possible examines and ’
chooses among different job offers. ©

" The work inspector : he can access the
employer’s data and check how many hours he -
has registered for each work



Additional Actors (system component)

" The web platform: a simplified web platform with
an interface allowing to post new job offers, to
insert job candidacies, to access information
about the posted jobs

" The blockchain infrastructure: it records smart
contracts and transactions for the various job o
contracts, it allows to manage direct payments, it
grants security and privacy >
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Architecture

The system Is composed of the following elements.

On-chain
* Smart contract JobOfferManager
* Smart.contract Employment

Out-of-chain
* Web interface



Smart contract: JobOfferManager

Represents the job offer. Implements several
functions such as:

*deposit.of ETH in the contract

*the creation of a new job offer

*hiring the worker

*the payment after the conclusion of the work. _\




Smart contract: Employment

Contains all information relating to candidates,
employees and the employment relationship.

Allows the worker to:
* apply for different offers,

* withdraw the application,
* request to add work hours for a specific job



Smart contract: Employment
Allows the employer to:

* Increase the hours worked by the employee,

* start the procedure for completing the work
when the agreed hours have been reached.




Web interface

The web based interface:

* Allows the initialisation of all the envisaged
Smart contracts

* It makes it easy to both create a new job offer,
apply and hire.




UML diagrams for
system design
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Class diagram
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<<contract=>
JobOfferManager

Contract diagram

<<library contract== =<PrimitiveType=>

[:: Ownable Address

+ lastid: uint32

+ pwner: address

JobOfferManager

+ getNumberOfOfers( ). uint256
+ getName(uint32): string memory

+ getExpirationDate(uint32). uint256
==mapl[address]== _hiredinjobs ) .
1+ getSalary(uint32): uin

\|; + getAddressWorker{uint32). address payable

<<structs= <<library contract>>
OnGoingJobs + getAddressEmployer(uint32). address ERCTM
+ onGoingJobs: uint32[ ] + getinfo(uint32): string memory is [ + balanceOf(). Integer

+ getAmountHours{uint32). uint

+ ownerOf(): Integer

<<ma[§;g:1qr§§s]}} + getArray ActiveOffer{uint32); uint[ ] memory —mint(): null
- N 1
+ getJobOffer{uint32): uint32
z<siructs> + getDepositedAmount{uint32). uint256
Jobs
+ getOffersBy(address): uint32[ ]| memory
+ jobs: uint32[ ]
+ getApplicantOf(address). uint32] ] memory
+ gefTokenld(uint32): uint
<=map[uint32]>> _jobs _ |4 getBalance{uint32): uint256
+ getlsActiveOffer{uint32). bool
<<sfruct=» + getlsMoneylsReturn{uint32): bool
JobOffer ==PrimitiveType=>=
wiui : rimitiveType
+ expirationDate: uint256 *+ pourMoney(uint) ;«map[address]» —depositor uint256

+ worker: address payable

+ employer: address + payment(uint32)

: iﬁ(r}qes:trsi:éng + hireWorker{address payable, uint32)
+workhours: uintd " - ) ) S—
+salary * uint + newJob(uint2586, string memory, string memory <<mapjuint}>> _lsRefound =<PrimitiveType==

uint8, wint) 1 bool




Contract diagram

Employment

<<contract=>
Employment

=<<library contract>>

<<contract>>
JobOfferManager

==map[address]=>

_requestHoursForEmployer

.

1

+ sc_JobOfferManager:. address payable

Ownable

<<Primitive Type>>
Address

+ setJobOfferAddress{address payable)

+ getlobOfferAddress( ) address payable

+ getlsSetJobOfferAddress( ): bool

+ getlsEqualToJobOfierAddress(address payable): bool
+ getApplicantOf{uint32): address] | memory

+ getJobsDone( ) wint32[ ] memory

+ getRequestHours{uint32): uint
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uint32[ ] memory
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ERCT21

15 + balanceOf(). Integer
+ ownerOf(): Integer

_mint(): null

==map[uint32]=>= workhours

<<PrimitiveType>>
uint

==map[uint32]== _requesiHours

<<siruct==
RequestHours

+ idOffer: wint32[ ]
+ numbersHours: uindf |

==:n110diﬂer=r= onI}-Emplcyer[uiq*.Sz)

==mapladdress]=
_jobsDone

<<siruct==
JobDone

+ jobsDone: uint32[ ]

==map[uint32]==
_applicantsOf

<<Siruct=>»
Applicant

+ appliant- address[ ]
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The prototype

We developed the Solidity code for the Smart
Contracts and built the DApp system which provides
the users with a user friendly web interface enabling
the implementation of all the features described.



The prototype

The web interface uses “metamask”, a bridge to run
Ethereum DApps right in your browser with out
running a full Ethereum node, for providing the
communication channel between Dapp and
blockchain. We deployed the Smart Contracts on the
Ropsten test net in order to test our prototype under
all working conditions.



The prototype
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Conclusions

In this case study we applied the BOSE and ABCDE
methodology to devise a DApp for managing
temporary employments so that by design the
employers and the employees are able to easily
identify roles, constraints, commitments in the
specific domain.



Conclusions

This approach allows to build a DApp software
product in which all the requirements and features
are determined and recovered by the diagrams
adopted by the methodology so that Smart Contracts
variables and ABI are quickly and precisely identified.



Conclusions

The approach reduce risks of failure since in-chain
and out-of-chain components are identified by design
since the very beginning, and smart contract
structure and interactions are well defined before the
software development. We show how the approach
successfully quided wus to produce a working

prototype for managing the case study of the
temporary employments.



Software Engineering for DApp Smart
Contracts managing workers Contracts

Thank you!
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