Software Engineering for DApp Smart
Contracts managing workers Contracts

CONTRACT

Giorgia Lallai, Andrea Pinna , Michele Marchesi and Roberto Tonelli — DLT 2020 Ancona

Summary

1. Temporary work contracts

2. The Employment Eco-system
3. System Architecture

4. Implementation

5. Conclusions

Temporary work contract

A temporary work contract expects the work
relationship to have:

e A final term

A fixed duration.

Temporary work contract

Contracts facilitate access to the world of work but

are often characterized by lack of guarantees for
workers

Our Ildea: Blockchain e Smart contract
for Temporary Employemnt

*.

Blockchain technology allows
the rapid registration of
employment contracts In
accordance with legislation,
for full protection of the
rights of both the worker and
the employer

Blockchain and Smart contract

Work contracts can be registered
In"a immutable manner within the
blockchain and can be read by the B — M
competent authorities In each — ‘

moment Iin order to verify the
legality

The employment eco-system

We designed and implemented
a decentralized Dblockchain-
based employment system for
the management of temporary
employment.

We design our system by
following the ABCDE Method

The employment eco-system

We designed our system by following the ABCDE Method.

The ABCDE methodology expects the definition of the
system objective, the identifying of the system’s actors, and
the subdivision of the system in out-of-chain and in-chain
components using the diagrams as prescribed by BQSE
(Blockchain Oriented Software Engineering). 6

Objectives

" Make any employment
relationship implemented
for temporary work
transparent and traceable

" Simplify and standardize
hiring procedures and

prevent undeclared work >

Actors

" The Employer: it announce the request for one or
more workers, it describes the job (the pay, the
time period for the request, and so on).

" The worker : it typically applies for a job,
provides his CV, if possible examines and ’
chooses among different job offers. ©

" The work inspector : he can access the
employer’s data and check how many hours he -
has registered for each work

Additional Actors (system component)

" The web platform: a simplified web platform with
an interface allowing to post new job offers, to
insert job candidacies, to access information
about the posted jobs

" The blockchain infrastructure: it records smart
contracts and transactions for the various job o
contracts, it allows to manage direct payments, it
grants security and privacy >

UML Use Case
Diagram

Administrator

/

User

Worker

Inspector

Employer

8.C. System

Create employmen
system

Send application
View application

Withdraw application &

View Job workhours
Add workhours

View current jobs

View completed jobs

View job offer applies
Deposit money
Rqui;e
(' Add new job offer

Add hours

Web interface
worker

Web interface
employer

Hours to be
confirmed, which

view created jobs

the worker has
enterad

Architecture

The system Is composed of the following elements.

On-chain
* Smart contract JobOfferManager
* Smart.contract Employment

Out-of-chain
* Web interface

Smart contract: JobOfferManager

Represents the job offer. Implements several
functions such as:

*deposit.of ETH in the contract

*the creation of a new job offer

*hiring the worker

*the payment after the conclusion of the work. _\

Smart contract: Employment

Contains all information relating to candidates,
employees and the employment relationship.

Allows the worker to:
* apply for different offers,

* withdraw the application,
* request to add work hours for a specific job

Smart contract: Employment
Allows the employer to:

* Increase the hours worked by the employee,

* start the procedure for completing the work
when the agreed hours have been reached.

Web interface

The web based interface:

* Allows the initialisation of all the envisaged
Smart contracts

* It makes it easy to both create a new job offer,
apply and hire.

UML diagrams for
system design

UML Activity
diagram of the
Employer

I the sit
.%{ View Home page I = lleaves the sfie] }@{
flogin] /N
W
‘ Insert New Job Offer
W

‘ View candidacies ‘

[no candidate] and [expired offer]

[selected a candidate
and
[active offer]

‘ Hire worker ‘

/N

\1/ W

‘ View hours done ‘ Add hours

[iob not completed]

[iob completed

Payment |

View Home page

UML Activity diagram

of the worker l

[offer expired]
or
[worker hired]

[offer active]
and
[no worker hired

Withdraw candidacy
L —

[you have not been hired]
[you have been hired]

v Y\’

[View hours done] [Request add hours]

| |
Ly
J

[iob completed]

| Payment I

[iob not completed]

UML Sate Diagram

[worker apply]
W
[pour money] |’] [Employer add new i}ﬁer][1 [offer expiration] |’
. xL'uﬂfait for Mew Job Offer J }L Active Job Offer J }L Job Offer inactive

[Hired worker]

W

[employer confirm hours] (al[wnrk:er add hours)

>[Relationship k

[payment]

@<
T,

Class diagram

<<Jsry

worker
viewOffers()
sendApplication()
i T getJobOffer(id)
viewApllication() warkerApply(id)
withDrawApllication() withdrawCandidacy(id)

requestAdditionalHours(id,numHours)
viewWorHours() getJobsDone()
getApplicantOf{address)
addWorkHours()
viewCurrentJobs()
viewCompletedJobs() ¢¢contracts»
Employment

< sy

employer
viewOffers() \ (,.f
viewJobOfferApplies() <<contracts»

JobOfferManager
depositMoney()
addMewJobOffer()
[getdobOffer(id)
hireWaorker() getApplicantoid)
jewCreatedJob pourhoney()
viewCreated.Jobs() addNewOfer()
addHours() addWorkdays{id,numHours)
payment{id)

payment() moneyReturnsEemployer()
viewCareerWorker()

<<contract=>
JobOfferManager

Contract diagram

<<library contract== =<PrimitiveType=>

[:: Ownable Address

+ lastid: uint32

+ pwner: address

JobOfferManager

+ getNumberOfOfers(). uint256
+ getName(uint32): string memory

+ getExpirationDate(uint32). uint256
==mapl[address]== _hiredinjobs) .
1+ getSalary(uint32): uin

\|; + getAddressWorker{uint32). address payable

<<structs= <<library contract>>
OnGoingJobs + getAddressEmployer(uint32). address ERCTM
+ onGoingJobs: uint32[] + getinfo(uint32): string memory is [+ balanceOf(). Integer

+ getAmountHours{uint32). uint

+ ownerOf(): Integer

<<ma[§;g:1qr§§s]}} + getArray ActiveOffer{uint32); uint[] memory —mint(): null
- N 1
+ getJobOffer{uint32): uint32
z<siructs> + getDepositedAmount{uint32). uint256
Jobs
+ getOffersBy(address): uint32[]| memory
+ jobs: uint32[]
+ getApplicantOf(address). uint32]] memory
+ gefTokenld(uint32): uint
<=map[uint32]>> _jobs _ |4 getBalance{uint32): uint256
+ getlsActiveOffer{uint32). bool
<<sfruct=» + getlsMoneylsReturn{uint32): bool
JobOffer ==PrimitiveType=>=
wiui : rimitiveType
+ expirationDate: uint256 *+ pourMoney(uint) ;«map[address]» —depositor uint256

+ worker: address payable

+ employer: address + payment(uint32)

: iﬁ(r}qes:trsi:éng + hireWorker{address payable, uint32)
+workhours: uintd " -)) S—
+salary * uint + newJob(uint2586, string memory, string memory <<mapjuint}>> _lsRefound =<PrimitiveType==

uint8, wint) 1 bool

Contract diagram

Employment

<<contract=>
Employment

=<<library contract>>

<<contract>>
JobOfferManager

==map[address]=>

_requestHoursForEmployer

.

1

+ sc_JobOfferManager:. address payable

Ownable

<<Primitive Type>>
Address

+ setJobOfferAddress{address payable)

+ getlobOfferAddress() address payable

+ getlsSetJobOfferAddress(): bool

+ getlsEqualToJobOfierAddress(address payable): bool
+ getApplicantOf{uint32): address] | memory

+ getJobsDone() wint32[] memory

+ getRequestHours{uint32): uint

+ getRequestHoursForEmplyer{): uint32[] memory |
uint32[] memory

+ getHoursDone{uint32): uint

+ getHourMissing(uint32): uin

+ jobCompleted(uini32)

+ addWorkdays(uint32, uint)

+ requestAdditionalHours(uint32, uint)
+workerApplies(uint32)

+ withdrawCandidacy{uint32)

+ owner: address

<<library contract=>
ERCT21

15 + balanceOf(). Integer
+ ownerOf(): Integer

_mint(): null

==map[uint32]=>= workhours

<<PrimitiveType>>
uint

==map[uint32]== _requesiHours

<<siruct==
RequestHours

+ idOffer: wint32[]
+ numbersHours: uindf |

==:n110diﬂer=r= onI}-Emplcyer[uiq*.Sz)

==mapladdress]=
_jobsDone

<<siruct==
JobDone

+ jobsDone: uint32[]

==map[uint32]==
_applicantsOf

<<Siruct=>»
Applicant

+ appliant- address[]

worker employer employment jobOffersManager

S e q u e n c e employer worker web interface web interface Contract Contract

diagram |
job applicati T metenonn -

addHoursiid)

The vanable n is
the numiber hours

send confirmafion

view hours update (: _________________________ 1’ _________________________
<€3 :

o [

Far every job offer
for which a worker
has been hired, it
gets the hours to be
confirmed

4

H viewHours() M

: loop /”
. getReguestHours(id) .
-

view hours request

RN i e i SRR L el e e R R R e S e R i]

{..-.....-.--.-..._

b

R

The enployer can
iconfirm the hours
only for the offers
icreated by him

Fe-e-

selectJobOffer(id) :

=Y

A [idisVald & worker Is saf |
addWorkdays(id,n)

| AT,

b

: At/ [Warking o mached]
: jobCompleted(id)
1 =

5 paymen(ic) >D

view confimation :

The prototype

We developed the Solidity code for the Smart
Contracts and built the DApp system which provides
the users with a user friendly web interface enabling
the implementation of all the features described.

The prototype

The web interface uses “metamask”, a bridge to run
Ethereum DApps right in your browser with out
running a full Ethereum node, for providing the
communication channel between Dapp and
blockchain. We deployed the Smart Contracts on the
Ropsten test net in order to test our prototype under
all working conditions.

The prototype

m Job Offers

x m Employer

f

X

+

C ¥ @ localhost63342/DapplobOffer/DapplobOffer/Employer.htmi?addresslobOffer=0xc81AH

BURNEUERE

Account:

Visualizza candidati

Depositare denaro

0x738d8a8b408c385f15890f50d2d4b3b8ebc6742d

Nuova offerta

Mumero giorni di validita dell'offerta

2

Nome

Insegnante

Informazioni:

Si ricerca insegnate di filosofia

Ore di lavoro:

2

Stipendio(ETH):

0.1

Aggiungi offerta

Nuova Offer

B® MetaMask Notification = O k4

@ Ropsten Test Metwork

. Account 1
| CONTRACT INTERACTION |
DETAILS DATA
EDIT
GAS FEE 40.004
Mo Conversion Rate Available
AMOUNT + GAS FEE
TOTAL ¢0.004
Mo Conversion Rate Available
Reject Confirm

> & oxcs1A.00.
Home

& a %

© m

Conclusions

In this case study we applied the BOSE and ABCDE
methodology to devise a DApp for managing
temporary employments so that by design the
employers and the employees are able to easily
identify roles, constraints, commitments in the
specific domain.

Conclusions

This approach allows to build a DApp software
product in which all the requirements and features
are determined and recovered by the diagrams
adopted by the methodology so that Smart Contracts
variables and ABI are quickly and precisely identified.

Conclusions

The approach reduce risks of failure since in-chain
and out-of-chain components are identified by design
since the very beginning, and smart contract
structure and interactions are well defined before the
software development. We show how the approach
successfully quided wus to produce a working

prototype for managing the case study of the
temporary employments.

Software Engineering for DApp Smart
Contracts managing workers Contracts

Thank you!

B

Giorgia Lallai, Andrea Pinna , Michele Marchesi and Roberto Tonelli — DLT 2020 Ancona

	Diapositiva 1
	Diapositiva 2
	Diapositiva 3
	Diapositiva 4
	Diapositiva 8
	Diapositiva 9
	Diapositiva 10
	Diapositiva 11
	Diapositiva 12
	Diapositiva 13
	Diapositiva 14
	Diapositiva 15
	Diapositiva 16
	Diapositiva 17
	Diapositiva 18
	Diapositiva 19
	Diapositiva 20
	Diapositiva 24
	Diapositiva 25
	Diapositiva 26
	Diapositiva 27
	Diapositiva 28
	Diapositiva 29
	Diapositiva 30
	Diapositiva 31
	Diapositiva 32
	Diapositiva 33
	Diapositiva 34
	Diapositiva 35
	Diapositiva 36
	Diapositiva 37
	Diapositiva 38

